Could someone exlpain...

i.Angel

New Member
Hey guys. I've been so confused after setting up (or helping:o ) our network around the house. After this I went into my PC World and was seeing all sorts of routers and other network junk.

Anyway, could someone explain the difference of between 802.11g/b/n ? <(if that is even correct:o )
 
Last edited:
IEEE 802.11, the Wi-Fi standard, denotes a set of Wireless LAN/WLAN standards developed by working group 11 of the IEEE LAN/MAN Standards Committee (IEEE 802). The term 802.11x is also used to denote this set of standards, and is not to be mistaken for any one of its elements. There is no single 802.11x standard. The term IEEE 802.11 is also used to refer to the original 802.11, which is now sometimes called "802.11legacy."


The 802.11 family currently includes six over-the-air modulation techniques that all use the same protocol, the most popular (and prolific) techniques are those defined by the b, a, and g amendments to the original standard; security was originally included, and was later enhanced via the 802.11i amendment. Other standards in the family (c–f, h–j, n) are service enhancement and extensions, or corrections to previous specifications. 802.11b was the first widely accepted wireless networking standard, followed (somewhat counterintuitively) by 802.11a and 802.11g.

802.11 legacy

The original version of the standard IEEE 802.11 released in 1997 specifies two raw data rates of 1 and 2 megabits per second (Mbit/s) to be transmitted via infrared (IR) signals or in the Industrial Scientific Medical frequency band at 2.4 GHz. IR remains a part of the standard but has no actual implementations.

The original standard also defines Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) as the media access method. A significant percentage of the available raw channel capacity is sacrificed (via the CSMA/CA mechanisms) in order to improve the reliability of data transmissions under diverse and adverse environmental conditions.

At least five different, somewhat-interoperable, commercial products appeared using the original specification, from companies like Alvarion (PRO.11 and BreezeAccess-II), Netwave Technologies (AirSurfer Plus and AirSurfer Pro), Symbol Technologies (Spectrum24), and Proxim (OpenAir). A weakness of this original specification was that it offered so many choices that interoperability was sometimes challenging to realize. It is really more of a "meta-specification" than a rigid specification, allowing individual product vendors the flexibility to differentiate their products. Legacy 802.11 was rapidly supplemented (and popularized) by 802.11b. Widespread adoption of 802.11 networks only occurred after 802.11b was ratified and as a result few networks ran on the 802.11 standard.

802.11b

The 802.11b amendment to the original standard was ratified in 1999. 802.11b has a maximum raw data rate of 11 Mbit/s and uses the same CSMA/CA media access method defined in the original standard. Due to the CSMA/CA protocol overhead, in practice the maximum 802.11b throughput that an application can achieve is about 5.9 Mbit/s over TCP and 7.1 Mbit/s over UDP.

802.11b products appeared on the market very quickly, since 802.11b is a direct extension of the DSSS (Direct-sequence spread spectrum) modulation technique defined in the original standard. Technically, the 802.11b standard uses Complementary code keying (CCK) as its modulation technique, which is a variation on CDMA. Hence, chipsets and products were easily upgraded to support the 802.11b enhancements. The dramatic increase in throughput of 802.11b (compared to the original standard) along with substantial price reductions led to the rapid acceptance of 802.11b as the definitive wireless LAN technology.

802.11b is usually used in a point-to-multipoint configuration, wherein an access point communicates via an omni-directional antenna with one or more clients that are located in a coverage area around the access point. Typical indoor range is 30 m at 11 Mbit/s and 90 m at 1 Mbit/s. With high-gain external antennas, the protocol can also be used in fixed point-to-point arrangements, typically at ranges up to eight kilometers (km) although some report success at ranges up to 80–120 km where line of sight can be established. This is usually done in place of costly leased lines or very cumbersome microwave communications equipment. Designers of such installations who wish to remain within the law must however be careful about legal limitations on effective radiated power.

802.11b cards can operate at 11 Mbit/s, but will scale back to 5.5, then 2, then 1 Mbit/s (a.k.a Adaptive Rate Selection), if signal quality becomes an issue. Since the lower data rates use less complex and more redundant methods of encoding the data, they are less susceptible to corruption due to interference and signal attenuation. Extensions have been made to the 802.11b protocol (e.g., channel bonding and burst transmission techniques) in order to increase speed to 22, 33, and 44 Mbit/s, but the extensions are proprietary and have not been endorsed by the IEEE. Many companies call enhanced versions "802.11b+". These extensions have been largely obviated by the development of 802.11g, which has data rates up to 54 Mbit/s and is backwards-compatible with 802.11b.

802.11a

The 802.11a amendment to the original standard was ratified in 1999. The 802.11a standard uses the same core protocol as the original standard, operates in 5 GHz band, and uses a 52-subcarrier orthogonal frequency-division multiplexing (OFDM) with a maximum raw data rate of 54 Mbit/s, which yields realistic net achievable throughput in the mid-20 Mbit/s. The data rate is reduced to 48, 36, 24, 18, 12, 9 then 6 Mbit/s if required. 802.11a has 12 non-overlapping channels, 8 dedicated to indoor and 4 to point to point. It is not interoperable with 802.11b, except if using equipment that implements both standards.

Since the 2.4 GHz band is heavily used, using the 5 GHz band gives 802.11a the advantage of less interference. However, this high carrier frequency also brings disadvantages. It restricts the use of 802.11a to almost line of sight, necessitating the use of more access points; it also means that 802.11a cannot penetrate as far as 802.11b since it is absorbed more readily, other things (such as power) being equal.

Different countries have different regulatory support, although a 2003 World Radiotelecommunications Conference made it easier for use worldwide. 802.11a is now approved by regulations in the United States and Japan, but in other areas, such as the European Union, it had to wait longer for approval. European regulators were considering the use of the European HIPERLAN standard, but in mid-2002 cleared 802.11a for use in Europe. In the US, a mid-2003 FCC decision may open more spectrum to 802.11a channels.

Of the 52 OFDM subcarriers, 48 are for data and 4 are pilot subcarriers with a carrier separation of 0.3125 MHz (20 MHz/64). Each of these subcarriers can be a BPSK, QPSK, 16-QAM or 64-QAM. The total bandwidth is 20 MHz with an occupied bandwidth of 16.6 MHz. Symbol duration is 4 microseconds with a guard interval of 0.8 microseconds. The actual generation and decoding of orthogonal components is done in baseband using DSP which is then upconverted to 5 GHz at the transmitter. Each of the subcarriers could be represented as a complex number. The time domain signal is generated by taking an Inverse Fast Fourier transform (IFFT). Correspondingly the receiver downconverts, samples at 20 MHz and does an FFT to retrieve the original coefficients. The advantages of using OFDM include reduced multipath effects in reception and increased spectral efficiency.

802.11a products started shipping in 2001, lagging 802.11b products due to the slow availability of the 5 GHz components needed to implement products. 802.11a was not widely adopted overall because 802.11b was already widely adopted, because of 802.11a's disadvantages, because of poor initial product implementations, making its range even shorter, and because of regulations. Manufacturers of 802.11a equipment responded to the lack of market success by improving the implementations (current-generation 802.11a technology has range characteristics much closer to those of 802.11b), and by making technology that can use more than one 802.11 standard. There are dual-band, or dual-mode or tri-mode cards that can automatically handle 802.11a and b, or a, b and g, as available. Similarly, there are mobile adapters and access points which can support all these standards simultaneously.

802.11g

In June 2003, a third modulation standard was ratified: 802.11g. This flavour works in the 2.4 GHz band (like 802.11b) but operates at a maximum raw data rate of 54 Mbit/s, or about 24.7 Mbit/s net throughput like 802.11a. 802.11g hardware will work with 802.11b hardware. Details of making b and g work well together occupied much of the lingering technical process. In older networks, however, the presence of an 802.11b participant significantly reduces the speed of an 802.11g network. The modulation scheme used in 802.11g is orthogonal frequency-division multiplexing (OFDM) for the data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mbit/s, and reverts to (like the 802.11b standard) CCK for 5.5 and 11 Mbit/s and DBPSK/DQPSK+DSSS for 1 and 2 Mbit/s. Even though 802.11g operates in the same frequency band as 802.11b, it can achieve higher data rates because of its similarities to 802.11a.

The 802.11g standard swept the consumer world of early adopters starting in January 2003, well before ratification. The corporate users held back and Cisco and other big equipment makers waited until ratification. By summer 2003, announcements were flourishing. Most of the dual-band 802.11a/b products became dual-band/tri-mode, supporting a, b, and g in a single mobile adaptor card or access point. Despite its major acceptance, 802.11g suffers from the same interference as 802.11b in the already crowded 2.4 GHz range. Devices operating in this range include microwave ovens, Bluetooth devices, and cordless telephones.

While 802.11g held the promise of higher throughput, actual results were degraded by a number of factors: conflict with 802.11b-only devices (see above), exposure to the same interference sources as 802.11b, limited channelization (only 3 fully non-overlapping channels like 802.11b) and the fact that the higher data rates of 802.11g are often more susceptible to interference than 802.11b, causing the 802.11g device to reduce the data rate to effectively the same rates used by 802.11b. The move to dual-mode/tri-mode products also carries with it economies of scale (e.g. single chip manufacturing). For the consumer, dual-band/tri-mode products ensure the best possible throughput in any given

802.11n

In January 2004 IEEE announced that it had formed a new 802.11 Task Group (TGn) to develop a new amendment to the 802.11 standard for local-area wireless networks. The real data throughput is estimated to reach a theoretical 540 Mbit/s (which may require an even higher raw data rate at the physical layer), and should be up to 40 times faster than 802.11b, and near 10 times faster than 802.11a or 802.11g. It is projected that 802.11n will also offer a better operating distance than current networks.

There were two competing proposals of the 802.11n standard: WWiSE (World-Wide Spectrum Efficiency), backed by companies including Broadcom, and TGn Sync backed by Intel and Philips.

Previous competitors TGn Sync, WWiSE, and a third group, MITMOT, said in late July 2005 that they would merge their respective proposals as a draft which would be sent to the IEEE in September; a final version will be submitted in November. The standardization process is expected to be completed by the second half of 2006.

802.11n builds upon previous 802.11 standards by adding MIMO (multiple-input multiple-output). MIMO uses multiple transmitter and receiver antennas to allow for increased data throughput through spatial multiplexing and increased range by exploiting the spatial diversity, perhaps through coding schemes like Alamouti coding.

The Enhanced Wireless Consortium (EWC)[3] was formed to help accelerate the IEEE 802.11n development process and promote a technology specification for interoperability of next-generation wireless local area networking (WLAN) products.

On January 19, 2006, the IEEE 802.11n Working Group approved the EWC's specification as the draft approval of 802.11n.


And if you think i wrote all that then you're crazy
http://en.wikipedia.org/wiki/802.11g
 
Well that certainly should have answered his question :P

Great read by the way, thx for all the effort.
 
Back
Top